Section 3.2
 The Derivative as a Function

(1) The Derivative Function
(2) Notation of Derivatives
(3) Derivative Rules

- Power Rule
(2) Constant Multiple Rule
- Sum/Difference Rules
- Derivative of the Natural Exponential Function
(4) The Definition of e
(5) Revisiting Some Examples Using The Rules

Derivative of a Function at a Point

The derivative of a function $y=f(x)$ at $x=a$ is (if it exists)

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

For example: The derivative function of $f(x)=x^{2}+4$ is

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}+4\right)-\left(x^{2}+4\right)}{h} \\
=\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}+4\right)-\left(x^{2}+4\right)}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
=\lim _{h \rightarrow 0} 2 x+h=2 x
\end{gathered}
$$

Notations for the Derivative

Let $y=f(x)$ be a differentiable function.

	Derivative Function	Derivative at $x=a$
Lagrange	$y^{\prime}(x)=f^{\prime}(x)$	$f^{\prime}(a)$
Leibniz	$\frac{d}{d x}(f(x))=\frac{d y}{d x}=\frac{d f}{d x}$	$\left.\frac{d}{d x}(f(x))\right\|_{x=a}=\left.\frac{d y}{d x}\right\|_{x=a}$

Higher Derivatives:

- $f^{\prime \prime}(x), f^{\prime \prime \prime}(x), \ldots, f^{(n)}(x), \ldots$
- $\frac{d}{d x}\left(\frac{d}{d x}(f(x))\right)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}$

$$
\left(\frac{d}{d x}\right)^{n}(f(x))=\frac{d^{n} y}{d x^{n}}
$$

Derivatives and Motion

A particle moves along a straight line. The function $s(t)$ represents its distance from a fixed point at time t.

- The velocity of the object at time t is $v(t)=s^{\prime}(t)=\frac{d s}{d t}$
- The acceleration at time t is $a(t)$:

$$
a(t)=s^{\prime \prime}(t)=v^{\prime}(t)=\frac{d^{2} s}{d t^{2}}=\frac{d v}{d t}
$$

- The jerk at time t is $j(t)$:

$$
j(t)=s^{\prime \prime \prime}(t)=v^{\prime \prime}(t)=a^{\prime}(t)=\frac{d^{3} s}{d t^{3}}=\frac{d^{2} v}{d t^{2}}=\frac{d a}{d t}
$$

Units

$s(t)$ distance $\quad, \quad v(t) \frac{\text { distance }}{\text { time }}, \quad a(t) \frac{\text { distance }}{\text { time }^{2}}, \quad j(t) \frac{\text { distance }}{\text { time }^{3}}$

Derivative Rules

Suppose that f and g are differentiable functions and c is a constant.
Derivative of Constants

$$
\frac{d}{d x}(c)=0
$$

Sum and Difference Rules

$$
\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x)) \quad \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Constant Multiple Rule

$$
\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))
$$

The Power Rule

Differentiating polynomials is now simple! $\frac{d}{d x}\left(x^{7}-12 x^{4}+x^{2}-x-3\right)$
$=\frac{d}{d x}\left(x^{7}\right)-12 \frac{d}{d x}\left(x^{4}\right)+\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(x)+\frac{d}{d x}(-3)=7 x^{6}-48 x^{3}+2 x-1$

Exponential Functions and their Derivatives

Recall that an exponential function is a function of the form $f(x)=b^{x}$, where b is a positive constant. Can we determine their derivatives?

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{b^{x+h}-b^{x}}{h}=\lim _{h \rightarrow 0} \frac{b^{\times}\left(b^{h}-1\right)}{h}=b^{\times} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h}
$$

The derivative depends on the value of $\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=\boldsymbol{f}^{\prime} \mathbf{(0)}$.
It will take some time, but we eventually will show that

$$
\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=\ln (b)
$$

Exponential Functions and their Derivatives

Derivatives of Exponential Functions

For all positive real numbers b,

$$
\frac{d}{d x}\left(b^{\times}\right)=b^{\times}\left(\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}\right)=b^{\times} \ln (b)
$$

Euler's constant \boldsymbol{e} is the unique number satisfying the equation

$$
\ln (e)=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 .
$$

(It so happens that $e \approx 2.71828184590452353602874713527 \ldots$)
Derivative of e^{x}

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Example I: Find an equation of the tangent line to $f(x)=2 e^{x}$ at $x=1$.

Example II: Let $f(x)=\left\{\begin{array}{ll}a x^{2}+b & x \leq 2 \\ x+a & x>2\end{array}\right.$. Find the values for \mathbf{a} and b which make the function differentiable.

Example III: Let $p(x)=x^{2}+a x+b$. Find values for \mathbf{a} and \mathbf{b} which make the graph of $p(x)$ pass through $(-1,-3)$ and make the tangent line to p at $x=-1$ horizontal.

$$
p(x)=x^{2}+a x+b
$$

